

Electrolytic Gating of High Carrier Density Thin Film Channel of InN and ZnO Wajahat Bin Jalal¹, Buddhadeb Pal², Himadri Chakraborti², Aditya K. Jain²,

Kantimay Das Gupta²

1)Department of Electrical Engineering Mewar University Rajisthan. 2) Department of Physics, Indian Institute of Technology Bombay. Mumbai.

- \succ Polymer electrolyte gate induces large surface charge density on thin films, nearly 100 times higher than that of normal insulting metal oxide gates.
- \succ With a typical insulated gate of maximum carrier density change of ~10¹³ cm⁻² for practical insulator thickness and gate voltages. That is why semiconductors can be gated but a thin film of metal cannot be gated.
- \succ Polymer gate allows carrier density swings of upto ~10¹⁵ cm⁻² . However the characteristics of a polymer gate is very different from a normal metal-on-insulator

RESULTS

- \succ From fig. (4 AND 5) it can be seen that current through channel can be well controlled by gate voltage(Vg).
- \succ Fig(7). Shows the temperature dependence of the conductance for fixed Vsd measure in the range 300 - 80K.

gate.

INTRODUCTION

- > We used InN and ZnO devices in Hall-bar geometry, gated with polymer electrolyte by which large density changes are achieved.
- > The gate bias leads to a electric double layer (EDL) forming at the channelpolymer interface and charge is induced in the channel electro-statically.

EXPERIMENTAL

- > Mechanical etching of InN was done with a Diamond -tipped scriber and ZnO was etched by chemical process.
- EDL-device was fabricated on sapphire with 300 nm (InN) OR 50nm (ZnO) and Ohmic contact pattern was defined by optical lithography followed by thermal evaporation (10 nm Ti/ 40 nm Au).
- \succ Gating was done using Poly Ethelene Oxide (PEO) and LiClO4.
- > Polymer electrolyte solution was made in ambient conditions by dissolving PEO and LiClO4 (10:1) in Acetonitrile.
- > Solution was mixed by magnetic stirring for 2 hours at room temperature and then allowed to evaporate in a Petri-dish for 3-4 hours.
- \succ After this one drop of the viscous solution was put on the channel forming the gate.
- > Hall measurement was carried out with a gate voltage bias at room temperature(300k) in a field up to 0.4T.
- \succ Low temperature measurement was also taken by varying temperature from 300K to 80k by dipping the Dipstick into liquid nitrogen.

Fig.(1):-Schematic diagram of EDL-FET

Fig.(6):- Slow Gate Response at room temperature

Fig.(7):- Frozen Gate effect of Polymer Gate At low temperature

CONCLUSION

- \succ The EDL polymer gate can be applied to tune the carrier density of higher carrier density samples.
- > Polymer gate could be an ideal gate at low temperature because even after removing the bias gate freezes.
- > Polemer gates are slow, can not be used for fast switching, though useful for sensing purpose.

FUTURE PLAN

 \gg As mentioned above the InN has reliable electrical properties with polymer electrolyte gate at room temperature, Our next target is to look at the low temperature transport properties of InN with polymer and metallic gate

Fig.(2):-ZnO with polymer gate

Fig.(3):-InN with polymer gate

REFRENCES

> Appl. Phys. Lett. 106, 041102 (2015); doi: 10.1063/1.4906598 > Appl. Phys. Lett. 103, 231105 (2013); doi: 10.1063/1.4838656 > Appl. Phys. A (2017) 123:597 DOI 10.1007/s00339-017-1218-5

ACKNOWLEDGEMENTS

- \succ I would like to thank IRCC, IIT Bombay and DST for their financial support.
- > The ZnO sample provided by Shravan K Appani from Prof. S. S. Major Lab department of Physics IIT Bombay, and InN provided by Prof. Apurba Laha, department of Electrical Engineering IIT Bombay.